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Abstract

In structural dynamics and vibration diagnosis, accelerometer is mainly used in measuring the
acceleration of vibrating structures. There are several well-known manufacturers making different kinds of
accelerometers which are commercially available, and widely used in practice. It was experienced that the
measured responses using Integrated Circuit Piezoelectric (ICP) type accelerometers were not reliable in
many cases. Hence to verify such observations, few ICP type accelerometers of three well-known
manufacturers were tested in the Laboratory and their signals were compared. Based on the test results of
four different accelerometers, a calibration procedure has been suggested.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In structural dynamics and vibration, vibration measurement is a matured area of research in
identifying and solving the vibration-related problems of structural components. In fact, now-a-days
vibration measurement plays a significant role in the dynamic qualification of newly designed
structural components [1–4], prediction of faults and structural aging-related problems [5–7],
condition monitoring of machines [8–11], and several other structural dynamics studies and diagnosis
[12–17]. To meet these requirements, accelerometers are mainly used to measure the acceleration
responses of the vibrating components. Commercially, several types of accelerometers manufactured
by many well-known manufacturers are available all over the world. Obviously, the quality of the
vibration-based diagnosis and/or identification of vibration-related problems mainly depend on the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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measured responses using accelerometers. So, reliability of the commercially available accelerometers
is very important. It has been experienced during field vibration measurements, accelerometers
mainly Integrated Circuit Piezoelectric (ICP) type, are not found to measure the non-stationary
impulsive responses of structures accurately in many cases. However, confidence in measuring
impulsive signals using the charge-type piezoelectric accelerometers is very good [6,10]. But now-a-
days, the ICP-type accelerometers are widely used in practice. Considering the importance of such
ICP-type accelerometer, few tests were conducted in the Laboratory on four different ICP-type
accelerometers of three different world-renowned manufacturers, and their test results compared.
Unfortunately, a unique test result was far from reality in most of the tests. The paper presents the
details of the tests carried out on the four different accelerometers in the laboratory and their results.
A typical comparison of field data was also discussed. Based on the experiences and the test results, a
calibration procedure for the accelerometer has also been suggested that would avoid such
discrepancies seen in the test results, and improve the performance of the accelerometers.
Moreover, it may be noted that the model number and the manufacturers name of the ICP-type

accelerometers used in the experiments are deliberately not mentioned, as the intention is to share
the experiences among several engineers and researchers involved in the area of vibration
measurements and diagnosis. It is expected that such experiences and observations presented in
the paper will be instrumental in enhancing the confidence level in calibration and the reliability of
the measured signal in future.
2. Usages of accelerometer

Following are the main technical specifications that decide the use of accelerometers.
(a)
 Sensitivity which relates the electrical signal (often in Voltage (V)) to the amplitude of
vibration in acceleration.
(b)
 Frequency range in which vibration measurement is useful.

(c)
 Amplitude limit that specifies the maximum range of acceleration that can be measured

accurately.

(d)
 Shock limit is maximum level of acceleration that the accelerometer can withstand without any

damage.

(e)
 Linearity is the accuracy of the measured acceleration amplitude in the measuring Frequency

range.

(f)
 Natural frequency which is indirectly indicative of the measuring Frequency range . Higher the

natural frequency of an accelerometer, larger the measuring frequency range in general.
In general, the selection of accelerometers is based on their technical specifications and the
measurement requirements like frequency range to be measured, amplitude of vibration, etc.
Accelerometers are in general used for following types of signal measurements.
(a)
 Periodic signal—Sinusoidal or/and swept-sine,

(b)
 Random,

(c)
 Impulsive.
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Hence the accuracy in all the above measurements is important. Few laboratory experiments
were conducted on few number of ICP-type accelerometers to confirm the same fact.
3. Laboratory experiments

Four ICP-type accelerometers having different technical specifications from three different
world-renowned manufactures were chosen for the Laboratory experiments. The technical
specifications of accelerometers are listed in Table 1 and they have been named as Accelero-
meters A–D. Out of these four accelerometers, three were uniaxial and one was triaxial
(Accelerometer C).
A long stroke shaker was used for the Laboratory experiments. The schematic of the shaker is

shown in Fig. 1. All the four accelerometers were mounted on the front of the shaker armature
which is also shown in Fig. 1. Front width of the armature is 150mm and the side arms are guided
through four ball bearings with four soft springs such that it can reciprocate in only one direction
without any relative motion across the armature width. The armature is very stiff to cause any
deformation across the armature width for the kind of tests conducted. In fact, the complete
system resembles as a single degree of freedom system of a rigid mass (armature) supported on a
spring. Moreover, simultaneous responses were measured from all the four accelerometers during
Table 1

Technical specification of the accelerometers

Accel. A Accel. B Accel. C Accel. D

Sensitivity (mV/g) 500 100 500 1000

Frequency range (Hz) 1–10,000 1–14,000 1–5000 1–5000

Amplitude limit (g) 10 75 10 5

Linearity (%) o75 74 73 71

Shock limit (g) 5000 1000 5000 1000

Driving Signal
Legend:

:  Hammer Location, SC : Signal Conditioner 

Shaker Power 
Amplifier 4 channels 

FFT Analyzer

SC- A SC- B 

SC- C 

SC- D Shaker

Fig. 1. Schematic of the shaker and the testing setup for the accelerometers.
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different tests conducted and the possibility of any error was ruled out. Accelerometers A, B and
D were mounted on the armature with stud, and Accelerometer C was mounted with adhesive.
The vibration signals from each accelerometer were conditioned through their own compatible
signal conditioners, i.e., accelerometer together with compatible signal conditioner from the same
manufacturer. This was done to eliminate any possibility of error due to unknown incompatibility
in electronics, if any, from other manufacturer. Finally, the voltage signals were processed
through a four-channel FFT analyser. The following tests were conducted.

3.1. Sinusoidal excitation

An in-built signal generator in the four-channels FFT analyser was used to drive the shaker
through its power amplifier. Sinusoidal signals were given to the shaker at several frequencies at
different amplitude levels and simultaneously responses were measured from all accelerometers
mounted on the shaker armature. The amplitude of excitation was controlled through the power
amplifier of the shaker, and the signal from Accelerometer A was used as a reference for
quantifying level of excitation given. The maximum level of excitation used was 4 g. It was
observed that the measured signals from all accelerometers were in phase with amplitude within
an error of 2% for all kind of sinusoidal tests conducted. A typical comparison of the measured
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Fig. 2. A comparison of measured responses by the four accelerometers when shaker is excited by the sinusoidal signal

at 100Hz.
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responses by all the four accelerometers is shown in Fig. 2 when the shaker was oscillating at
100Hz with maximum amplitude of 3.0 g.

3.2. Random excitation

Similar to the above test, several random excitations in different frequency bands within the
frequency limit of Accelerometer D with different maximum amplitudes upto 5 g measured from
the reference Accelerometer A were used to excite the shaker and the responses were measured
from all the four accelerometers. Though the nature/pattern of the measured signals were nearly
identical, but the amplitudes were never found to be same for all the four accelerometers. The
error of amplitude with respect to the reference Accelerometer A was observed to be of the order
of 30% and more in many cases. A typical case is shown in Fig. 3 when the shaker was excited
with a random excitation in a frequency band of 400Hz–3 kHz.

3.3. Impulsive excitation

Several impulsive excitations were given to the centre of the armature (marked in Fig. 1) by a
small hammer with different types of impacting heads from soft to hard (very stiff). The amplitude
of excitations given was very small and the responses were measured from all the four
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Fig. 3. A comparison of measured responses by the four accelerometers when shaker is excited by the random signal.
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accelerometers. An impulsive signal generates a broadband of excitation depending upon the level
of excitation amplitude and the impulsive head. A typical impulse and its PSD are shown in Fig. 4
when the hammer with a much harder tip was used. Even with this hammer head the frequency
band of excitation is upto approximately 1.4 kHz which is well below the measuring frequency
range of all the accelerometers. For other hammer tips, the frequency band of excitation was even
lower. The measured amplitude and phase were found to be almost identical for all the four
accelerometers when a soft tip hammer was used. It is compared in Fig. 5. However, with
increased hardness in the hammer tip, the measured responses (both amplitude and phase) by all
the four accelerometers were found to be totally different. Few such typical responses are shown
in Figs. 6 and 7. The measured responses by the Accelerometers A–C, shown in Figs. 6 and 7, at
least appear to be the responses due to an impulsive load though the phase and amplitudes are
significantly different, but the measured response by Accelerometer D seems strange in nature.
Moreover, it can be seen that the signal from Accelerometer B was consistently found to be in
phase with the armature movement. The same fact was not observed for other accelerometers.
1 2000
Frequency, Hz

-80

dB

-120

Fig. 4. A typical PSD of the impulse with hard tip.
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Fig. 5. A comparison of measured responses by the four accelerometers when shaker armature is excited by a soft tip

hammer.
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4. Field measurements

Centrifugal pumps are used to circulate moderator to the reactor vessel in nuclear power plants
through a long pipe. The pump operating speed is 3000 rpm for the case discussed here. Vibration
measurements were carried out all along the length of the pipe conveying fluid using
Accelerometers B and C during four such pumps being operational. A typical comparison
between the two measured responses at a location using Accelerometers B and C is shown in
Fig. 8. It can be seen from the figure that both the time history patterns and their spectra are
totally different. The appearance of peaks at the pump rpm and the vane passing frequency show
some credible signal measured by Accelerometer B.
5. Discussion

As observed from the field observations and the three different tests conducted on four
accelerometers in the Laboratory within the range of their technical specifications, it is difficult to
rely on the quality of measured responses especially when measuring a random and an impulse
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Fig. 6. A comparison of measured responses by the four accelerometers when shaker armature is excited by a hard tip

hammer.
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kind of response. Typically, all the accelerometers have shown a creditable response measurement
when measuring sinusoidal behaviour. As per the theory the accelerometer should accurately
measure other kind of responses once it is measuring the sinusoidal response accurately. In fact,
even if it is assumed that the impulsive signal given may excite the accelerometer natural
frequency, the measured responses should not be like the one observed in the experiments. One
such observation has been made during measurement on a pump with a charge-type piezoelectric
accelerometer, where impulsive suction jet on the blades and casing exciting the accelerometer
natural frequency mounted on the casing, and it was measured confidently with it [10]. Hence, the
error seen in the measured signals especially for transient/non-stationary signals (random and
impulsive responses) is raising a suspicion towards the associated electronics used in the ICP-type
accelerometers.
6. Calibration

The International code ISO 5347-0 [18] gave the guidelines for the calibration of vibration pick-
ups, which is generally followed by the manufacturers. The calibration procedure adopted
generally uses the sinusoidal vibration generator (shaker) with varying frequency and amplitude
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to characterise the accelerometer to be calibrated by comparing its measured responses with other
well-calibrated accelerometer. Accuracy in sinusoidal response measurement satisfies the
calibration procedure adopted. However, it has been observed that the performance of such
calibrated accelerometer may not be useful for measuring the random and impulsive behaviour of
structures. Hence the random and the impulsive loading test should also be included in the
calibration along with the standard calibration procedure for the accelerometer.
7. Concluding remarks

The simple tests carried out in the Laboratory on four different ICP-type accelerometers within
the range of their technical specification reveal the limitations of the accelerometers. Considering
the wide application of the ICP-type accelerometers in industries as well as in research studies, it is
important to enhance the confidence level in the measured responses. It is only possible if the
ICP-type accelerometer is calibrated for different kinds of structural responses expected in real-life
scenario and produces the responses efficaciously. Few additional tests need to be included in the
calibration procedures that have already been brought out in the paper.
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